Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils
نویسندگان
چکیده
Root exudation is increasingly being recognized as an important driver of ecosystem processes; however, few studies have examined the degree to which variations in exudate stoichiometry and soil resources affect microbial controls of nutrient availability and decomposition. We added root exudate mimics of varying chemical quality to soils collected from two adjacent forest stands (one a 70 year-old spruce plantation, the other a 200 year-old spruce-fir forest) that differ strongly in N availability. The exudate treatments were added for 50 consecutive days, and included water (control), C alone, N alone, and three combinations of C and N that varied stoichiometrically (i.e., C:N ratio of 10, 50 and 100). Exudate additions containing little or no N promoted the greatest losses of soil C in two soils, with the greatest losses occurring in the moderately labile (i.e., acid-extractable) fraction of the low N plantation soils. However, despite the uniformity of priming effects between sites ( 7% loss of soil C for both), there was little congruence in exudate-induced effects on microbial biomass and activity. In the plantation soils, exudates generally increased microbial biomass (especially fungi), accelerated N cycling and increased lignin-degrading enzyme activities relative to controls. In contrast, exudate additions to spruce-fir soils mostly decreased microbial biomass, decelerated N cycling, and had variable impacts on lignindegrading enzyme activities (decreased phenol oxidase but increased peroxidase). Collectively, this study suggests that while root exudates with low C and N have the potential to accelerate soil C losses by stimulating microbes to mine N from soil organic matter, the consequences of exudate inputs on nutrient fluxes are less predictable, and may hinge on the recalcitrance of (soil organic matter) SOM, N availability and microbial communities. ã 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China
Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns a...
متن کاملSoil Nutrient Composition in Afromontane Forests of Northern Ethiopia
Deforestation in the northern highlands of Ethiopia has left 35,000 forest fragments ranging in size from 3 to 300 ha (Bongers et al 2006). Deforestation produces edges which increase disturbance within the forest such as decreased water availability and increased light. To determine the degree of these edge effects and the nutrient status of these forests, I analyzed the nutrient composition o...
متن کاملVariations in chemical and physical properties of Amazon forest soils in relation to their genesis
Soil samples were collected in six South American countries in a total of 71 different 1 ha forest plots across the Amazon Basin as part of the RAINFOR project. They were analysed for total and exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality proposed. A diverse range of soils was found. For the...
متن کاملConvergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems
How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes...
متن کاملDifferential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes?
BACKGROUND Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. ...
متن کامل